Palm tree disease detection and classification using residual network and transfer learning of inception ResNet

Author:

Ahmed Mostafa,Ahmed AliORCID

Abstract

Agriculture has become an essential field of study and is considered a challenge for many researchers in computer vision specialization. The early detection and classification of plant diseases are crucial for preventing growing diseases and hence yield reduction. Although many state-of-the-artwork proposed various classification techniques for plant diseases, still face many challenges such as noise reduction, extracting the relevant features, and excluding the redundant ones. Recently, deep learning models are noticeable as hot research and are widely used for plant leaf disease classification. Although the achievement with these models is notable, still the need for efficient, fast-trained, and few-parameters models without compromising on performance is inevitable. In this work, two approaches of deep learning have been proposed for Palm leaf disease classification: Residual Network (ResNet) and transfer learning of Inception ResNet. The models make it possible to train up to hundreds of layers and achieve superior performance. Considering the merit of their effective representation ability, the performance of image classification using ResNet has been boosted, such as diseases of plant leaves classification. In both approaches, problems such as variation of luminance and background, different scales of images, and inter-class similarity have been treated. Date Palm dataset having 2631 colored images with varied sizes was used to train and test the models. Using some well-known metrics, the proposed models outperformed many of the recent research in the field in original and augmented datasets and achieved an accuracy of 99.62% and 100% respectively.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference25 articles.

1. Effect of formulated bioorganic containing Burkholderia GanoEB2 in suppressing Ganoderma disease in oil palm seedlings;N. li Nadhrah;Plant Protection Science,2016

2. “Detection of Basal Stem Rot Disease at Oil Palm Plantations Using Sonic Tomography”.;I. Ishaq;Journal of Sustainability Science and Management,2014

3. Mid-infrared spectroscopy for early detection of basal stem rot disease in oil palm;S. Liaghat;Computers and Electronics in Agriculture,2014

4. Estimating the yield loss of oil palm due to Ganoderma basal stem rot disease by using BAYESIAN model averaging;A. KAMU;Journal of Oil Palm Research,2020

5. An intelligent approach for detecting palm trees diseases using image processing and machine learning;H. Alaa;International Journal of Advanced Computer Science and Applications,2020

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3