Fast and accurate interpretation of workload classification model

Author:

Shim Sooyeon,Kim Doyeon,Jang Jun-Gi,Chae Suhyun,Lee Jeeyong,Kang U.ORCID

Abstract

How can we interpret predictions of a workload classification model? A workload is a sequence of operations executed in DRAM, where each operation contains a command and an address. Classifying a given sequence into a correct workload type is important for verifying the quality of DRAM. Although a previous model achieves a reasonable accuracy on workload classification, it is challenging to interpret the prediction results since it is a black box model. A promising direction is to exploit interpretation models which compute the amount of attribution each feature gives to the prediction. However, none of the existing interpretable models are tailored for workload classification. The main challenges to be addressed are to 1) provide interpretable features for further improving interpretability, 2) measure the similarity of features for constructing the interpretable super features, and 3) provide consistent interpretations over all instances. In this paper, we propose INFO (INterpretable model For wOrkload classification), a model-agnostic interpretable model which analyzes workload classification results. INFO provides interpretable results while producing accurate predictions. We design super features to enhance interpretability by hierarchically clustering original features used for the classifier. To generate the super features, we define and measure the interpretability-friendly similarity, a variant of Jaccard similarity between original features. Then, INFO globally explains the workload classification model by generalizing super features over all instances. Experiments show that INFO provides intuitive interpretations which are faithful to the original non-interpretable model. INFO also shows up to 2.0× faster running time than the competitor while having comparable accuracies for real-world workload datasets.

Funder

Samsung Electronics

Institute of Engineering Research, Seoul National University

Institute of Computer Technology at Seoul National University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference21 articles.

1. Jang JG, Shim S, Egay V, Lee J, Park J, Chae S, et al. Accurate Open-set Recognition for Memory Workload; 2022.

2. Ribeiro MT, Singh S, Guestrin C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In: Krishnapuram B, Shah M, Smola AJ, Aggarwal CC, Shen D, Rastogi R, editors. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

3. Zhou B, Khosla A, Lapedriza À, Oliva A, Torralba A. Learning Deep Features for Discriminative Localization. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016.

4. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In: IEEE International Conference on Computer Vision, ICCV 2017.

5. Lundberg SM, Lee S. A Unified Approach to Interpreting Model Predictions. In: Guyon I, von Luxburg U, Bengio S, Wallach HM, Fergus R, Vishwanathan SVN, et al., editors. Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3