Alternating current electromagnetic field exposure lessens intramyocellular lipid accumulation due to high-fat feeding via enhanced lipid metabolism in mice

Author:

Nakanishi Ryosuke,Tanaka Masayuki,Nisa Badur un,Shimizu Sayaka,Hirabayashi Takumi,Tanaka Minoru,Maeshige Noriaki,Roy Roland R.,Fujino HidemiORCID

Abstract

Long-term high-fat feeding results in intramyocellular lipid accumulation, leading to insulin resistance. Intramyocellular lipid accumulation is related to an energy imbalance between excess fat intake and fatty acid consumption. Alternating current electromagnetic field exposure has been shown to enhance mitochondrial metabolism in the liver and sperm. Therefore, we hypothesized that alternating current electromagnetic field exposure would ameliorate high-fat diet-induced intramyocellular lipid accumulation via activation of fatty acid consumption. C57BL/6J mice were either fed a normal diet (ND), a normal diet and exposed to an alternating current electromagnetic field (ND+EMF), a high-fat diet (HFD), or a high-fat diet and exposed to an alternating current electromagnetic field (HFD+EMF). Electromagnetic field exposure was administered 8 hrs/day for 16 weeks using an alternating current electromagnetic field device (max.180 mT, Hokoen, Utatsu, Japan). Tibialis anterior muscles were collected for measurement of intramyocellular lipids, AMPK phosphorylation, FAT/CD-36, and carnitine palmitoyltransferase (CPT)-1b protein expression levels. Intramyocellular lipid levels were lower in the HFD + EMF than in the HFD group. The levels of AMPK phosphorylation, FAT/CD-36, and CPT-1b protein levels were higher in the HFD + EMF than in the HFD group. These results indicate that alternating current electromagnetic field exposure decreases intramyocellular lipid accumulation via increased fat consumption.

Funder

JSPS KAKENHI

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference59 articles.

1. The impact of a high-fat diet in mice is dependent on duration and age, and differsmuscles;GAM Messa;J Exp Biol,2020

2. What if Minkowski had been ageusic? An alternative angle on diabetes;JD McGarry;Science,1992

3. Leptin, skeletal muscle lipids, and lipid-induced insulin resistance;JJ Dube;American journal of physiology Regulatory, integrative and comparative physiology.,2007

4. Insulin resistance and cardiovascular disease;HN Ginsberg;The Journal of clinical investigation,2000

5. Insulin resistance: Review of the underlying molecular mechanisms;H Yaribeygi;Journal of cellular physiology,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of interleukin-15 on autophagy regulation in the skeletal muscle of mice;American Journal of Physiology-Endocrinology and Metabolism;2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3