Osseointegrability of 3D-printed porous titanium alloy implant on tibial shaft bone defect in rabbit model

Author:

Phuoc Hung DoORCID,Hoang Phu NguyenORCID,Yang Sam,Fraser Darren,Nguyen Vu ThuaORCID

Abstract

Previous studies have demonstrated the ability of osseointegration of porous titanium implants in cancellous bone. Our study was designed to (i) investigate the ability of bone ingrowth into 3D-printed porous titanium alloy implant on the cortical bone of rabbits using CT-scan and histology, and (ii) to identify the consistency of the radiology information between clinical Cone Beam Computed Tomography (CBCT) and Micro Computed Tomography (μCT) in the evaluation of bone ingrowth. The porous titanium alloy implants were 3D-printed employing the Electron Beam Melting (EBM) technology with an intended pore size of 600 μm and porosity of approximately 50 percent. Each implant was inserted into tibial diaphysis in one rabbit and its pores were classified as contacting bone or non-contacting bone. Depending on the time of explantation, the rabbits were divided into two groups: group 1 consisting of 6 rabbits between 13 and 20 weeks and group 2 consisting of 6 rabbits between 26 and 32 weeks. Tissue ingrowth into the non-bone contacting pores were evaluated by CBCT and histology. μCT was used to further investigate the bone ingrowth into four implants (two from each group were randomly chosen). The CBCT detected the present of tissue with bone-like density in both bone-contacting pores and non-bone-contacting pores of all implants. The μCT analysis also supported this result. All the bone-like tissues were then histologically confirmed to be mature bone. The analysis of CBCT data to assess bone ingrowth in porous implants had the sensitivity, specificity, positive and negative predictive values of 85, 84, 93 and 70 percent, respectively, when considering μCT assessment as the gold standard. Fully porous titanium alloy implant has great potential to reconstruct diaphyseal bone defect due to its good ability of osseointegration. CBCT is a promising method for evaluation of bone ingrowth into porous implants.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference39 articles.

1. Managing bone defects;A Nauth;Journal of orthopaedic trauma,2011

2. Management of segmental bone defects;C Mauffrey;J Am Acad Orthop Surg,2015

3. Bone transport using the Ilizarov method: a review of complications in 100 consecutive cases;C Iacobellis;Strategies Trauma Limb Reconstr,2010

4. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium;H Matsuno;Biomaterials,2001

5. Biomedical applications of titanium and its alloys;CN Elias;JOM,2008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3