Abstract
The decreased β-cell mass and impaired β-cell functionality are the primary causes of diabetes mellitus (DM). Nevertheless, the underlying molecular mechanisms by which β-cell growth and function are controlled are not fully understood. In this work, we show that leucettines, known to be DYRK1A kinase inhibitors, can improve glucose-stimulated insulin secretion (GSIS) in rodent β-cells and isolated islets, as well as in hiPSC-derived β-cells islets. We confirm that DYRK1A is expressed in murine insulinoma cells MIN6. In addition, we found that treatment with selected leucettines stimulates proliferation of β-cells and promotes MIN6 cell cycle progression to the G2/M phase. This effect is also confirmed by increased levels of cyclin D1, which is highly responsive to proliferative signals. Among other leucettines, leucettine L43 had a negligible impact on β-cell proliferation, but markedly impair GSIS. However, leucettine L41, in combination with LY364947, a, a potent and selective TGF-β type-I receptor, significantly promotes GSIS in various cellular diabetic models, including MIN6 and INS1E cells in 2D and 3D culture, iPSC-derived β-cell islets derived from iPSC, and isolated mouse islets, by increased insulin secretion and decreased glucagon level. Our findings confirm an important role of DYRK1A inhibitors as modulators of β-cells function and suggested a new potential target for antidiabetic therapy. Moreover, we show in detail that leucettine derivatives represent promising antidiabetic agents and are worth further evaluation, especially in vivo.
Funder
Narodowe Centrum Nauki
Uniwersytet Jagielloński w Krakowie
NAWA Polish Returns 2018
Publisher
Public Library of Science (PLoS)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献