Predicting fall risk using multiple mechanics-based metrics for a planar biped model

Author:

Williams DanielORCID,Martin Anne E.ORCID

Abstract

For both humans and robots, falls are undesirable, motivating the development of fall prediction models. Many mechanics-based fall risk metrics have been proposed and validated to varying degrees, including the extrapolated center of mass, the foot rotation index, Lyapunov exponents, joint and spatiotemporal variability, and mean spatiotemporal parameters. To obtain a best-case estimate of how well these metrics can predict fall risk both individually and in combination, this work used a planar six-link hip-knee-ankle biped model with curved feet walking at speeds ranging from 0.8 m/s to 1.2 m/s. The true number of steps to fall was determined using the mean first passage times from a Markov chain describing the gaits. In addition, each metric was estimated using the Markov chain of the gait. Because calculating the fall risk metrics from the Markov chain had not been done before, the results were validated using brute force simulations. Except for the short-term Lyapunov exponents, the Markov chains could accurately calculate the metrics. Using the Markov chain data, quadratic fall prediction models were created and evaluated. The models were further evaluated using differing length brute force simulations. None of the 49 tested fall risk metrics could accurately predict the number of steps to fall by themselves. However, when all the fall risk metrics except the Lyapunov exponents were combined into a single model, the accuracy increased substantially. These results suggest that multiple fall risk metrics must be combined to obtain a useful measure of stability. As expected, as the number of steps used to calculate the fall risk metrics increased, the accuracy and precision increased. This led to a corresponding increase in the accuracy and precision of the combined fall risk model. 300 step simulations seemed to provide the best tradeoff between accuracy and using as few steps as possible.

Funder

National Science Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy efficient walking: combining height variation of the center of mass and curved feet;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3