YOLOv5-LiNet: A lightweight network for fruits instance segmentation

Author:

Lawal Olarewaju MubashiruORCID

Abstract

To meet the goals of computer vision-based understanding of images adopted in agriculture for improved fruit production, it is expected of a recognition model to be robust against complex and changeable environment, fast, accurate and lightweight for a low power computing platform deployment. For this reason, a lightweight YOLOv5-LiNet model for fruit instance segmentation to strengthen fruit detection was proposed based on the modified YOLOv5n. The model included Stem, Shuffle_Block, ResNet and SPPF as backbone network, PANet as neck network, and EIoU loss function to enhance detection performance. YOLOv5-LiNet was compared to YOLOv5n, YOLOv5-GhostNet, YOLOv5-MobileNetv3, YOLOv5-LiNetBiFPN, YOLOv5-LiNetC, YOLOv5-LiNet, YOLOv5-LiNetFPN, YOLOv5-Efficientlite, YOLOv4-tiny and YOLOv5-ShuffleNetv2 lightweight model including Mask-RCNN. The obtained results show that YOLOv5-LiNet having the box accuracy of 0.893, instance segmentation accuracy of 0.885, weight size of 3.0 MB and real-time detection of 2.6 ms combined together outperformed other lightweight models. Therefore, the YOLOv5-LiNet model is robust, accurate, fast, applicable to low power computing devices and extendable to other agricultural products for instance segmentation.

Funder

Shanxi Agricultural University Science and Technology Innovation Fund Project

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference40 articles.

1. Global fruit production in 2020.;M. Shahbandeh,2022

2. Automatic fruit and vegetable classification from images;R Rocha;Comput. Electron. Agric,2010

3. Goosegrass detection in strawberry and tomato using a convolutional neural network.;SM Sharpe;Sci. Rep,2020

4. Tomato detection based on modified YOLOv3 framework.;MO Lawal;Sci Rep,2021

5. Mask-RCNN.;K He;Proc. IEEE Int. Conf. Comput. Vis,2017

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3