The effect of a novel AQP4 facilitator, TGN-073, on glymphatic transport captured by diffusion MRI and DCE-MRI

Author:

Alghanimy AlaaORCID,Martin Conor,Gallagher Lindsay,Holmes William M.

Abstract

The glymphatic system is a low resistance pathway, by which cerebrospinal fluid enters the brain parenchyma along perivascular spaces via AQP4 channels. It is hypothesised that the resulting convective flow of the interstitial fluid provides an efficient mechanism for the removal of waste toxins from the brain. Therefore, enhancing AQP4 function might protect against neurodegenerative diseases such as Alzheimer’s disease (AD), in which the accumulation of harmful proteins and solutes is a hallmark feature. Here, we test the effect of a putative AQP4 facilitator, TGN-073, on glymphatic transport in a normal rat brain by employing different MRI techniques. Surgical procedures were undertaken to catheterise the cisterna magna, thereby enabling infusion of the MRI tracer. Followed by the intraperitoneal injection of either TGN-073, or the vehicle. Using a paramagnetic contrast agent (Gd-DTPA) as the MRI tracer, dynamic 3D T1 weighted imaging of the glymphatic system was undertaken over two hours. Further, the apparent diffusion coefficient was measured in different brain regions using diffusion-weighted imaging (DWI). While physiological parameters and arterial blood gas analysis were monitored continuously. We found that rats treated with TGN-073 showed the distribution of Gd-DTPA was more extensive and parenchymal uptake was higher compared with the vehicle group. Water diffusivity was increased in the brain of TGN-073 treated group, which indicates greater water flux. Also, MRI showed the glymphatic transport and distribution in the brain is naturally heterogeneous, which is consistent with previous studies. Our results indicate that compounds such as TGN-073 can improve glymphatic function in the brain. Since glymphatic impairment due to AQP4 dysfunction is potentially associated with several neurological disorders such as AD, dementia and traumatic brain injury, enhancing AQP4 functionality might be a promising therapeutic target.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3