Machine learning for prediction of in-hospital mortality in lung cancer patients admitted to intensive care unit

Author:

Huang Tianzhi,Le Dejin,Yuan Lili,Xu Shoujia,Peng XiulanORCID

Abstract

Backgrounds The in-hospital mortality in lung cancer patients admitted to intensive care unit (ICU) is extremely high. This study intended to adopt machine learning algorithm models to predict in-hospital mortality of critically ill lung cancer for providing relative information in clinical decision-making. Methods Data were extracted from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) for a training cohort and data extracted from the Medical Information Mart for eICU Collaborative Research Database (eICU-CRD) database for a validation cohort. Logistic regression, random forest, decision tree, light gradient boosting machine (LightGBM), eXtreme gradient boosting (XGBoost), and an ensemble (random forest+LightGBM+XGBoost) model were used for prediction of in-hospital mortality and important feature extraction. The AUC (area under receiver operating curve), accuracy, F1 score and recall were used to evaluate the predictive performance of each model. Shapley Additive exPlanations (SHAP) values were calculated to evaluate feature importance of each feature. Results Overall, there were 653 (24.8%) in-hospital mortality in the training cohort, and 523 (21.7%) in-hospital mortality in the validation cohort. Among the six machine learning models, the ensemble model achieved the best performance. The top 5 most influential features were the sequential organ failure assessment (SOFA) score, albumin, the oxford acute severity of illness score (OASIS) score, anion gap and bilirubin in random forest and XGBoost model. The SHAP summary plot was used to illustrate the positive or negative effects of the top 15 features attributed to the XGBoost model. Conclusion The ensemble model performed best and might be applied to forecast in-hospital mortality of critically ill lung cancer patients, and the SOFA score was the most important feature in all models. These results might offer valuable and significant reference for ICU clinicians’ decision-making in advance.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference39 articles.

1. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods.;J Ferlay;Int J Cancer,2019

2. Lung Cancer 2020: Epidemiology, Etiology, and Prevention.;BC Bade;Clin Chest Med,2020

3. Lung cancer.;AA Thai;Lancet,2021

4. Global Epidemiology of Lung Cancer;JA Barta;Ann Glob Health,2019

5. Current Cancer Epidemiology.;C Mattiuzzi;J Epidemiol Glob Health,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3