Author:
Mao Baojie,Ling Lichao,Pan Yuhang,Zhang Rui,Zheng Wanning,Shen Yanfei,Lu Wei,Lu Yuning,Xu Shanhu,Wu Jiong,Wang Ming,Wan Shu
Abstract
AbstractThis study aimed to develop a machine learning (ML)-based tool for early and accurate prediction of in-hospital mortality risk in patients with spontaneous intracerebral hemorrhage (sICH) in the intensive care unit (ICU). We did a retrospective study in our study and identified cases of sICH from the MIMIC IV (n = 1486) and Zhejiang Hospital databases (n = 110). The model was constructed using features selected through LASSO regression. Among five well-known models, the selection of the best model was based on the area under the curve (AUC) in the validation cohort. We further analyzed calibration and decision curves to assess prediction results and visualized the impact of each variable on the model through SHapley Additive exPlanations. To facilitate accessibility, we also created a visual online calculation page for the model. The XGBoost exhibited high accuracy in both internal validation (AUC = 0.907) and external validation (AUC = 0.787) sets. Calibration curve and decision curve analyses showed that the model had no significant bias as well as being useful for supporting clinical decisions. XGBoost is an effective algorithm for predicting in-hospital mortality in patients with sICH, indicating its potential significance in the development of early warning systems.
Funder
Natural Science Foundation of Zhejiang Province
Medical Health Science and Technology Project of Zhejiang Provincial Health Commission
High Level Talents of Zhejiang Province
Key Research and Development Project of Zhejiang Provincial Department of Science and Technology
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献