An automatic music generation and evaluation method based on transfer learning

Author:

Guo Yi,Liu Yangcheng,Zhou TingORCID,Xu Liang,Zhang Qianxue

Abstract

In recent years, deep learning has seen remarkable progress in many fields, especially with many excellent pre-training models emerged in Natural Language Processing(NLP). However, these pre-training models can not be used directly in music generation tasks due to the different representations between music symbols and text. Compared with the traditional presentation method of music melody that only includes the pitch relationship between single notes, the text-like representation method proposed in this paper contains more melody information, including pitch, rhythm and pauses, which expresses the melody in a form similar to text and makes it possible to use existing pre-training models in symbolic melody generation. In this paper, based on the generative pre-training-2(GPT-2) text generation model and transfer learning we propose MT-GPT-2(music textual GPT-2) model that is used in music melody generation. Then, a symbolic music evaluation method(MEM) is proposed through the combination of mathematical statistics, music theory knowledge and signal processing methods, which is more objective than the manual evaluation method. Based on this evaluation method and music theories, the music generation model in this paper are compared with other models (such as long short-term memory (LSTM) model,Leak-GAN model and Music SketchNet). The results show that the melody generated by the proposed model is closer to real music.

Funder

Xihua University Graduate Innovation Fund

Intelligent Terminal Key Laboratory of SiChuan Province

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3