Pop Music Generation

Author:

Zhu Hongyuan1,Liu Qi1,Yuan Nicholas Jing2,Zhang Kun1,Zhou Guang3,Chen Enhong1

Affiliation:

1. University of Science and Technology of China, Hefei, Anhui, China

2. Huawei Cloud8AI, Hangzhou, Zhejiang, China

3. Microsoft, Suzhou, China

Abstract

Music plays an important role in our daily life. With the development of deep learning and modern generation techniques, researchers have done plenty of works on automatic music generation. However, due to the special requirements of both melody and arrangement, most of these methods have limitations when applying to multi-track music generation. Some critical factors related to the quality of music are not well addressed, such as chord progression, rhythm pattern, and musical style. In order to tackle the problems and ensure the harmony of multi-track music, in this article, we propose an end-to-end melody and arrangement generation framework to generate a melody track with several accompany tracks played by some different instruments. To be specific, we first develop a novel Chord based Rhythm and Melody Cross-Generation Model to generate melody with a chord progression. Then, we propose a Multi-Instrument Co-Arrangement Model based on multi-task learning for multi-track music arrangement. Furthermore, to control the musical style of arrangement, we design a Multi-Style Multi-Instrument Co-Arrangement Model to learn the musical style with adversarial training. Therefore, we can not only maintain the harmony of the generated music but also control the musical style for better utilization. Extensive experiments on a real-world dataset demonstrate the superiority and effectiveness of our proposed models.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3