Abstract
PHRF1 is an E3 ligase that promotes TGF-β signaling by ubiquitinating a homeodomain repressor TG-interacting factor (TGIF). The suppression of PHRF1 activity by PML-RARα facilitates the progression of acute promyelocytic leukemia (APL). PHRF1 also contributes to non-homologous end-joining in response to DNA damage by linking H3K36me3 and NBS1 with DNA repair machinery. However, its role in class switch recombination (CSR) is not well understood. In this study, we report the importance of PHRF1 in IgA switching in CH12F3-2A cells and CD19-Cre mice. Our studies revealed that Crispr-Cas9 mediated PHRF1 knockout and shRNA-silenced CH12F3-2A cells reduced IgA production, as well as decreased the amounts of PARP1, NELF-A, and NELF-D. The introduction of PARP1 could partially restore IgA production in PHRF1 knockout cells. Intriguingly, IgA, as well as IgG1, IgG2a, and IgG3, switchings were not significantly decreased in PHRF1 deficient splenic B lymphocytes isolated from CD19-Cre mice. The levels of PARP1 and NELF-D were not decreased in PHRF1-depleted primary splenic B cells. Overall, our findings suggest that PHRF1 may modulate IgA switching in CH12F3-2A cells.
Funder
Ministry of Science and Technology, Taiwan
Publisher
Public Library of Science (PLoS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献