A deep learning-based application for COVID-19 diagnosis on CT: The Imaging COVID-19 AI initiative

Author:

Topff LaurensORCID,Sánchez-García José,López-González Rafael,Pastor Ana Jiménez,Visser Jacob J.ORCID,Huisman Merel,Guiot JulienORCID,Beets-Tan Regina G. H.,Alberich-Bayarri Angel,Fuster-Matanzo Almudena,Ranschaert Erik R.,

Abstract

Background Recently, artificial intelligence (AI)-based applications for chest imaging have emerged as potential tools to assist clinicians in the diagnosis and management of patients with coronavirus disease 2019 (COVID-19). Objectives To develop a deep learning-based clinical decision support system for automatic diagnosis of COVID-19 on chest CT scans. Secondarily, to develop a complementary segmentation tool to assess the extent of lung involvement and measure disease severity. Methods The Imaging COVID-19 AI initiative was formed to conduct a retrospective multicentre cohort study including 20 institutions from seven different European countries. Patients with suspected or known COVID-19 who underwent a chest CT were included. The dataset was split on the institution-level to allow external evaluation. Data annotation was performed by 34 radiologists/radiology residents and included quality control measures. A multi-class classification model was created using a custom 3D convolutional neural network. For the segmentation task, a UNET-like architecture with a backbone Residual Network (ResNet-34) was selected. Results A total of 2,802 CT scans were included (2,667 unique patients, mean [standard deviation] age = 64.6 [16.2] years, male/female ratio 1.3:1). The distribution of classes (COVID-19/Other type of pulmonary infection/No imaging signs of infection) was 1,490 (53.2%), 402 (14.3%), and 910 (32.5%), respectively. On the external test dataset, the diagnostic multiclassification model yielded high micro-average and macro-average AUC values (0.93 and 0.91, respectively). The model provided the likelihood of COVID-19 vs other cases with a sensitivity of 87% and a specificity of 94%. The segmentation performance was moderate with Dice similarity coefficient (DSC) of 0.59. An imaging analysis pipeline was developed that returned a quantitative report to the user. Conclusion We developed a deep learning-based clinical decision support system that could become an efficient concurrent reading tool to assist clinicians, utilising a newly created European dataset including more than 2,800 CT scans.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference40 articles.

1. COVID-19: breaking down a global health crisis;SI Mallah;Ann Clin Microbiol Antimicrob,2021

2. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.;C Huang;The Lancet,2020

3. Testing at scale during the COVID-19 pandemic;TR Mercer;Nat Rev Genet,2021

4. Review of COVID-19 testing and diagnostic methods;O Filchakova;Talanta,2022

5. Coronavirus: a comparative analysis of detection technologies in the wake of emerging variants;S Sharma;Infection,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3