The investigation of constraints in implementing robust AI colorectal polyp detection for sustainable healthcare system

Author:

Bian HaitaoORCID,Jiang Min,Qian JingjingORCID

Abstract

Colorectal cancer (CRC) is one of the significant threats to public health and the sustainable healthcare system during urbanization. As the primary method of screening, colonoscopy can effectively detect polyps before they evolve into cancerous growths. However, the current visual inspection by endoscopists is insufficient in providing consistently reliable polyp detection for colonoscopy videos and images in CRC screening. Artificial Intelligent (AI) based object detection is considered as a potent solution to overcome visual inspection limitations and mitigate human errors in colonoscopy. This study implemented a YOLOv5 object detection model to investigate the performance of mainstream one-stage approaches in colorectal polyp detection. Meanwhile, a variety of training datasets and model structure configurations are employed to identify the determinative factors in practical applications. The designed experiments show that the model yields acceptable results assisted by transfer learning, and highlight that the primary constraint in implementing deep learning polyp detection comes from the scarcity of training data. The model performance was improved by 15.6% in terms of average precision (AP) when the original training dataset was expanded. Furthermore, the experimental results were analysed from a clinical perspective to identify potential causes of false positives. Besides, the quality management framework is proposed for future dataset preparation and model development in AI-driven polyp detection tasks for smart healthcare solutions.

Funder

Young Scientists Fund

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3