Rehabilitation exoskeleton torque control based on PSO-RBFNN optimization

Author:

Li Jiayi,Tai Yuanzheng,Meng FanweiORCID

Abstract

Exoskeletons are widely used in the field of medical rehabilitation, however imprecise exoskeleton control may lead to accidents during patient rehabilitation, so improving the control performance of exoskeletons has become crucial. Nevertheless, improving the control performance of exoskeletons is extremely difficult, the nonlinear nature of the exoskeleton model makes control particularly difficult, and external interference when the patient wears an exoskeleton can also affect the control effect. In order to solve the above problems, a method based on particle swarm optimization (PSO) and RBF neural network to optimize exoskeleton torque control is proposed to study the motion trajectory of nonlinear exoskeleton joints in this paper, and it is found that exoskeleton torque control optimized by PSO-RBFNN has faster control speed, better stability, more accurate control results and stronger anti-interference, and the optimized exoskeleton can effectively solve the problem of difficult control of nonlinear exoskeleton and the interference problem when the patient wears the exoskeleton.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference22 articles.

1. Exoskeleton and end-effector robots for upper and lower limbs rehabilitation: narrative review;F Molteni;Narrative review. PM&R,2018

2. AHA In: https://www.heart.org/. accessed January 15th 2023.

3. A review on lower limb rehabilitation exoskeleton robots;D Shi;Chinese Journal of Mechanical Engineering,2019

4. Proportional Joint-moment control for instantaneously adaptive ankle exoskeleton assistance;GM Gasparri;IEEE Transactions on Neural Systems and Rehabilitation Engineering,2019

5. Neural PID control of robot manipulators with application to an upper limb exoskeleton;Yu Wen;IEEE Transactions on Cybernetics,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3