A portable feedback-controlled pump for monitoring eye outflow facility in conscious rats

Author:

Mohamed Youssef,Passaglia Christopher L.ORCID

Abstract

Intraocular pressure (IOP) is heavily influenced by the resistance of trabecular outflow pathways through which most of the aqueous humor produced by the eye continuously drains. The standard method of quantifying outflow resistance and other aspects of ocular fluid dynamics is eye cannulation, which allows for direct measurement and manipulation of IOP and flow in animal models. Since the method is invasive, indirect techniques that are slower and less accurate must be used for chronological studies. A novel technology is introduced that can autonomously measure outflow facility in conscious rats multiple times a day. A smart portable micropump infuses fluid into the eye through a permanently-implanted cannula and dynamically adjusts flow rate using a unique proportional feedback algorithm that sets IOP to a target level, even though IOP fluctuates erratically in awake free-moving animals. Pressure-flow data collected by the system from anesthetized rats were validated against intraocular recordings with commercial pressure and flow sensors. System and sensor estimates of outflow facility were indistinguishable, averaging 23 ± 3 nl·min-1·mmHg-1 across animals (n = 11). Pressure-flow data were then collected round-the-clock for several days from conscious rats, while outflow facility was measured every few hours. A significant diurnal facility rhythm was observed in every animal (n = 4), with mean daytime level of 22 ± 10 nl·min-1·mmHg-1 and mean nighttime level of 15 ± 7 nl·min-1·mmHg-1. The rhythm correlated with diurnal changes in IOP and likely contributed prominently to those changes based on the day-night swing in facility magnitude. Hence, the portable smart pump offers a unique tool for repeated long-term monitoring of outflow facility and other possible parameters of ocular health. It could also be useful in animal glaucoma studies for reversibly inducing acute or chronic ocular hypertension without explicitly damaging trabecular outflow pathways.

Funder

Foundation for the National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3