Profiling IOP-responsive genes in anterior and posterior ocular tissues in the rat CEI glaucoma model

Author:

Lozano Diana C.,Yang Yong-Feng,Cepurna William O.,Smoody Barbara F.,Ing Eliesa,Morrison John C.,Keller Kate E.ORCID

Abstract

AbstractPurposeThe rat Controlled Elevation of Intraocular pressure (CEI) model allows study ofin vivoresponses to defined intraocular pressures (IOP). In this study, we use Nanostring technology to investigatein vivoIOP-related gene responses in the trabecular meshwork (TM) and optic nerve head (ONH) simultaneously from the same animals.MethodsMale and female rats (N=35) were subject to CEI for 8-hours at pressures simulating mean, daytime normotensive rat IOP (CEI-20), or 2.5x IOP (CEI-50). Naïve animals, receiving no anesthesia or surgical interventions, served as controls. Immediately after CEI, TM and ONH tissues were dissected, RNA isolated, and samples were analyzed with a Nanostring panel containing 770 genes. Post-processing, raw count data were uploaded to Rosalind® for differential gene expression analyses.ResultsFor the TM, 45 IOP-related genes were significant in the “CEI-50 vs. CEI-20” and “CEI-50 vs. naïve” comparisons, with 15 genes common to both comparisons. Bioinformatics analysis identified Notch and TGFβ pathways to be the most up- and down-regulated KEGG pathways, respectively. For ONH, 22 significantly regulated genes were identified in the “CEI-50 vs. naïve” comparison. Pathway analysis identified ‘defense response’ and ‘immune response’ as two significantly upregulated biological process pathways.ConclusionsThis study demonstrates the ability to assay IOP-responsive genes in both TM and ONH tissues simultaneously. In the TM, downregulation of TGFβ pathway genes suggest that TM responses may prevent TGFβ-induced extracellular matrix synthesis. For ONH, the initial response to elevated IOP may be protective, with astrocytes playing a key role in these gene responses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3