An Efficient Hybrid Job Scheduling Optimization (EHJSO) approach to enhance resource search using Cuckoo and Grey Wolf Job Optimization for cloud environment

Author:

Paulraj D.,Sethukarasi T.,Neelakandan S.,Prakash M.ORCID,Baburaj E.ORCID

Abstract

Cloud computing has now evolved as an unavoidable technology in the fields of finance, education, internet business, and nearly all organisations. The cloud resources are practically accessible to cloud users over the internet to accomplish the desired task of the cloud users. The effectiveness and efficacy of cloud computing services depend on the tasks that the cloud users submit and the time taken to complete the task as well. By optimising resource allocation and utilisation, task scheduling is crucial to enhancing the effectiveness and performance of a cloud system. In this context, cloud computing offers a wide range of advantages, such as cost savings, security, flexibility, mobility, quality control, disaster recovery, automatic software upgrades, and sustainability. According to a recent research survey, more and more tech-savvy companies and industry executives are recognize and utilize the advantages of the Cloud computing. Hence, as the number of users of the Cloud increases, so did the need to regulate the resource allocation as well. However, the scheduling of jobs in the cloud necessitates a smart and fast algorithm that can discover the resources that are accessible and schedule the jobs that are requested by different users. Consequently, for better resource allocation and job scheduling, a fast, efficient, tolerable job scheduling algorithm is required. Efficient Hybrid Job Scheduling Optimization (EHJSO) utilises Cuckoo Search Optimization and Grey Wolf Job Optimization (GWO). Due to some cuckoo species’ obligate brood parasitism (laying eggs in other species’ nests), the Cuckoo search optimization approach was developed. Grey wolf optimization (GWO) is a population-oriented AI system inspired by grey wolf social structure and hunting strategies. Make span, computation time, fitness, iteration-based performance, and success rate were utilised to compare previous studies. Experiments show that the recommended method is superior.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference34 articles.

1. ‘‘An improved genetic algorithm for task scheduling in the cloud environments using the priority queues: Formal verification, simulation, and statistical testing,” J.;B. Keshanchi;Syst. Softw.,2017

2. , ‘‘Task scheduling techniques in cloud computing: A literature survey,” Future Gener;A. Arunarani;Comput. Syst.,2019

3. ‘‘Dynamic resource allocation for an energy efficient VM architecture for cloud computing,” in Proc;D. Alsadie;Australas. Comput. Sci. Week Multiconference,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3