Provably secure data selective sharing scheme with cloud-based decentralized trust management systems

Author:

Velmurugan S.,Prakash M.,Neelakandan S.,Radhakrishnan Arun

Abstract

AbstractThe smart collection and sharing of data is an important part of cloud-based systems, since huge amounts of data are being created all the time. This feature allows users to distribute data to particular recipients, while also allowing data proprietors to selectively grant access to their data to users. Ensuring data security and privacy is a formidable task when selective data is acquired and exchanged. One potential issue that emerges is the risk that data may be transmitted by cloud servers to unauthorized users or individuals who have no interest in the particular data or user interests. The prior research lacks comprehensive solutions for balancing security, privacy, and usability in secure data selective sharing schemes inside Cloud-Based decentralized trust management systems. Motivating factors for settling this gap contain growing concerns concerning data privacy, the necessity for scalable and interoperable frameworks, and the increasing dependency on cloud services for data storage and sharing, which necessitates robust and user-friendly mechanisms for secure data management. An effective and obviously secure data selective sharing and acquisition mechanism for cloud-based systems is proposed in this work. We specifically start by important a common problematic related to the selective collection and distribution of data in cloud-based systems. To address these issues, this study proposes a Cloud-based Decentralized Trust Management System (DTMS)-connected Efficient, Provably Secure Data Selection Sharing Scheme (EPSDSS). The EPSDSS approach employs attribute-based encryption (ABE) and proxy re-encryption (PRE) to provide fine-grained access control over shared data. A decentralized trust management system provides participant dependability and accountability while mitigating the dangers of centralized trust models. The EPSDSS-PRE paradigm would allow data owners to regulate granular access while allowing users to customize data collection without disclosing their preferences. In our strategy, the EPSDSS recognizes shared data and generates short fingerprints for information that can elude detection before cloud storage. DTMS also computes user trustworthiness and improves user behaviour administration. Our research demonstrates that it’s able to deliver trustworthy and safe data sharing features in cloud-based environments, making it a viable option for enterprises seeking to protect sensitive data while maximizing collaboration and utilization of resources.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3