Impact of surface coating and systemic anticoagulants on hemostasis and inflammation in a human whole blood model

Author:

Spiegelburg Doreen TabeaORCID,Mannes Marco,Schultze Anke,Scheibenberger Frieder,Müller Frederik,Klitzing Amadeo,Messerer David Alexander ChristianORCID,Nilsson Ekdahl Kristina,Nilsson Bo,Huber-Lang Markus,Braun Christian KarlORCID

Abstract

Background Surface compatibility with blood is critical both for scientific investigations on hemostasis and clinical applications. Regarding in vitro and ex vivo investigations, minimal alteration in physiological hemostasis is of particular importance to draw reliable conclusions on the human coagulation system. At the same time, artificial coagulation activation must be avoided, which is relevant for the patient, for example to prevent stent graft occlusion. The aim was to evaluate the advantages and disadvantages of antithrombotic and antifouling surface coatings in the context of their suitability for ex vivo incubation and the study of coagulation properties. Methods We investigated the impact of different protocols for surface coating of synthetic material and different anticoagulants on hemostasis and platelet activation in ex vivo human whole blood. Blood samples from healthy donors were incubated in coated microtubes on a rotating wheel at 37°C. Two protocols for surface coating were analyzed for hemostatic parameters and metabolic status, a heparin-based coating (CHC, Corline Heparin Conjugate) without further anticoagulation and a passivating coating (MPC, 2-methacryloyloxethyl phosphorylcholine) with added anticoagulants (enoxaparin, ENOX; or fondaparinux, FPX). Employing the MPC-based coating, the anticoagulants enoxaparin and fondaparinux were compared regarding their differential effects on plasmatic coagulation by thrombelastometry and on platelet activation by flowcytometry and platelet function assays. Results Using the CHC coating, significant coagulation cascade activation was observed, whereas parameters remained mostly unchanged with MPC-based protocols. Extended incubation caused significantly elevated levels of the soluble membrane attack complex. Neither ENOX nor FPX caused a relevant impairment of platelet function or activation capacity and thrombelastometric parameters remained unchanged with both protocols. For translational purposes, we additionally modeled endotoxemia with the MPC-based protocols by incubating with lipopolysaccharide plus/minus thrombin. While coagulation parameters remained unchanged, elevated Interleukin 8 and Matrix Metalloproteinase 9 demonstrated preserved immune cell responsiveness. Conclusions The MPC-based protocols demonstrated better hemocompatibility compared to CHC, and ENOX and FPX proved useful for additional anticoagulation. Furthermore, this simple-to-use whole blood model may be useful for experimental analyses of the early coagulatory and immunological response without decalcification.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anti-fouling coatings for blood-contacting devices;Smart Materials in Medicine;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3