Study of Biocompatibility of Membranes in Online Hemodiafiltration

Author:

Ojeda Raquel,Arias-Guillén Marta,Gómez Miquel,Vera ManelORCID,Fontseré Néstor,Rodas Lida,Filella Xavier,Reverter Juan Carlos,Lozano Francisco,Villamor Neus,Maduell Francisco

Abstract

Background: The biocompatibility of dialysis membranes is a determining factor in avoiding chronic microinflammation in patients under haemodialysis. Lower biocompatibility has been related to increased inflammatory status, which is known to be associated with cardiovascular events. Classically, cellulose membranes have been considered bioincompatible. A new-generation of asymmetric cellulose triacetate (CTA) membranes allows the performance of high convective transport techniques, but there have been no studies of their biocompatibility. The aim of the present study was to analyze and compare the biocompatibility characteristics of 4 membranes, including CTA, in online hemodiafiltration (OL-HDF) patients. Methods: We included 15 patients in ­OL-HDF. After a 2-week washout period with helixone membrane, each patient was treated with the 4 membranes (polyamide, polynephron, helixone and CTA) for 4 weeks in a randomized order. The other dialysis parameters were kept stable throughout the study. We studied changes in markers of the activation of the complement system, monocytes, platelets, and adhesion molecules with the 4 membranes, as well as inflammatory parameters. Results: Biocompatibility was similar among the membranes. There were no sustained differences in complement activation, measured by C3a and C5a levels, or in platelet activation, determined by levels of P-selectin and platelet-derived microparticles (CD41a+). No differences were observed in activated monocyte levels (CD14+/CD16+) or in plasma levels of interleukin (IL)-1, IL-6, IL-10 or high-sensitivity C-reactive protein, although tumour necrosis factor-α levels decreased when the patients were dialyzed with CTA. No significant differences were found in markers of endothelial damage, assessed by levels of plasminogen activator inhibitor-1 and adhesion molecules (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1). Conclusion: The 4 membranes evaluated in this study in stable patients on OL-HDF, including the new-generation CTA, show similar biocompatibility with the methods applied.

Publisher

S. Karger AG

Subject

Nephrology,Hematology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3