Abstract
Coronary artery disease (CAD) is the leading cause of death in both developed and developing nations. The objective of this study was to identify risk factors for coronary artery disease through machine-learning and assess this methodology. A retrospective, cross-sectional cohort study using the publicly available National Health and Nutrition Examination Survey (NHANES) was conducted in patients who completed the demographic, dietary, exercise, and mental health questionnaire and had laboratory and physical exam data. Univariate logistic models, with CAD as the outcome, were used to identify covariates that were associated with CAD. Covariates that had a p<0.0001 on univariate analysis were included within the final machine-learning model. The machine learning model XGBoost was used due to its prevalence within the literature as well as its increased predictive accuracy in healthcare prediction. Model covariates were ranked according to the Cover statistic to identify risk factors for CAD. Shapely Additive Explanations (SHAP) explanations were utilized to visualize the relationship between these potential risk factors and CAD. Of the 7,929 patients that met the inclusion criteria in this study, 4,055 (51%) were female, 2,874 (49%) were male. The mean age was 49.2 (SD = 18.4), with 2,885 (36%) White patients, 2,144 (27%) Black patients, 1,639 (21%) Hispanic patients, and 1,261 (16%) patients of other race. A total of 338 (4.5%) of patients had coronary artery disease. These were fitted into the XGBoost model and an AUROC = 0.89, Sensitivity = 0.85, Specificity = 0.87 were observed (Fig 1). The top four highest ranked features by cover, a measure of the percentage contribution of the covariate to the overall model prediction, were age (Cover = 21.1%), Platelet count (Cover = 5.1%), family history of heart disease (Cover = 4.8%), and Total Cholesterol (Cover = 4.1%). Machine learning models can effectively predict coronary artery disease using demographic, laboratory, physical exam, and lifestyle covariates and identify key risk factors.
Publisher
Public Library of Science (PLoS)
Reference46 articles.
1. Prevalence of coronary artery disease and its risk factors in Majmaah City, Kingdom of Saudi Arabia;HM Albar;Front Cardiovasc Med,2022
2. Detecting Coronary Artery Disease from Computed Tomography Images Using a Deep Learning Technique;AF AlOthman;Diagnostics (Basel),2022
3. Left Main Coronary Artery Disease: The Forgotten Lead of Electrocardiogram Is Predictive;PB Bhattad;Cureus. Aug,2022
4. Clinical Practice Variations in the Management of Ischemia With No Obstructive Coronary Artery Disease;JM Luu;J Am Heart Assoc,2022
5. Clinical Implementation of Combined Monogenic and Polygenic Risk Disclosure for Coronary Artery Disease;DJ Maamari;JACC Adv,2022
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献