Abstract
Dengue is steadily increasing worldwide and expanding into higher latitudes. Current non-endemic areas are prone to become endemic soon. To improve understanding of dengue transmission in these settings, we assessed the spatiotemporal dynamics of the hitherto largest outbreak in the non-endemic metropolis of Buenos Aires, Argentina, based on detailed information on the 5,104 georeferenced cases registered during summer-autumn of 2016. The highly seasonal dengue transmission in Buenos Aires was modulated by temperature and triggered by imported cases coming from regions with ongoing outbreaks. However, local transmission was made possible and consolidated heterogeneously in the city due to housing and socioeconomic characteristics of the population, with 32.8% of autochthonous cases occurring in slums, which held only 6.4% of the city population. A hierarchical spatiotemporal model accounting for imperfect detection of cases showed that, outside slums, less-affluent neighborhoods of houses (vs. apartments) favored transmission. Global and local spatiotemporal point-pattern analyses demonstrated that most transmission occurred at or close to home. Additionally, based on these results, a point-pattern analysis was assessed for early identification of transmission foci during the outbreak while accounting for population spatial distribution. Altogether, our results reveal how social, physical, and biological processes shape dengue transmission in Buenos Aires and, likely, other non-endemic cities, and suggest multiple opportunities for control interventions.
Publisher
Public Library of Science (PLoS)
Subject
Infectious Diseases,Public Health, Environmental and Occupational Health
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献