Carbon Fiber Reinforced Shape Memory Polymer Composites

Author:

Gall Ken1,Mikulas Martin2,Munshi Naseem A.3,Beavers Fred3,Tupper Michael3

Affiliation:

1. Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309

2. Department of Aerospace Engineering, University of Colorado, Boulder, CO 80309

3. Composite Technology Development, Inc., Lafayette, CO 80026

Abstract

In this paper we present results on the deformation of carbon fiber reinforced shape memory polymer matrix composites for deployable space structure applications. The composites were processed using resin transfer molding or a pre-impregnated (pre-preg) laminate press, with both satin and plain weave fiber architectures. The polymer matrix glass transition temperature, T g, was approximately 95°C. Composite specimens were bent to specific radii at T = 120°C, and cooled while constrained to a temperature of 25°C, which left them frozen in the bent state. Heating the specimens above T g caused the composites to return to their original unbent shape with up to 95% recovery based on bend angle. The effect of constraint hold times up to 350 hours on the recoverability was found to be negligible. Microscopic investigations revealed that the dominant local deformation mode of the composites was buckling of the carbon fibers on the inner surface of the bend. Localized buckling out of the material plane lead to detrimental interfacial matrix failure while dispersed in-plane buckling was elastic and non-damaging. A clear path for tailoring the shape memory polymer composites to facilitate in-plane elastic buckling is presented and tested. The improved materials can bend to local radii of curvature, R, of 1.6 mm with full recoverability and negligible local damage.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3