Lipid Binding of Fresh and Stored Formulated Wheat Breads. Relationships with Dough and Bread Technological Performance

Author:

Collar C.1,Martínez J. C.1,Rosell C. M.1

Affiliation:

1. Laboratorio de Cereales, Instituto de Agroquiímica y Tecnologiía de Alimentos, CSIC. Poliígono La Coma s/n, 46980 Paterna, Spain. P.O. Box 73, 46100 Burjassot, Valencia, Spain

Abstract

Lipid binding in fresh and stored soured started breads formulated with nonfat [sodium carboxymethylcellulose (CMC), hydroxypropylmethylcellulose (HPMC), fungal α-amylase-and fat–monoglycerides (MGL), diacetyl tartaric acid ester of mono-diglycerides (DATEM) and sodium stearoyl lactylate (SSL)] additives were determined. Results were correlated with dough and bread technological performance during breadmaking and storage. A preferential binding of the added SSL to the starch with a concomitant displacement of endogenous polar lipids from starch to gluten was observed. Monoglycerides partly bound to the starch and partial remained in the pool of free lipids with displacement of endogenous polar lipids from gluten to starch and free fractions. Addition of DATEM induced similar changes as SSL in association pattern and as MGL in polar lipid translocation. Hydrocolloids showed preferential bindings to the gluten (CMC) and to the starch (HPMC) respectively, associated to a significant displacement of endogenous neutral gluten-bounded lipids to the starchy fraction (CMC) and to a significant release of both starch- and gluten-bonded lipids (HPMC). Addition of α-amylase promoted both a release of endogenous bonded lipids and a binding of glycolipids to the starch whereas the sourer starter induced disaggregation of the starch– and gluten–lipid complexes. Suitable trends in bread lipid parameters for high fermentative power, delayed starch gelatinization, edible fresh bread and reduced bread staleness corresponded to high values of neutral lipids of bonded fractions and high total glycolipid content achieved by the incorporation of SSL and/or CMC into dough formulation.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,General Chemical Engineering,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3