An overview for assessing a number of systems for estimating age and gender of speakers

Author:

Aalaa Ahmed Mohammed ,Yusra Faisal Al-Irhayim

Abstract

The determination of the age and gender of the speaker of the speech signal is an interesting topic in the interaction between human-machine. Speech signal has a variety of applications ranging from speech analyses to allocate human-machine interactions. This paper aims to conduct a comparative study of age and gender classification algorithms applied to the speech signal. Comparison of experimental results of different sources of voices for speakers of different languages and methods of miscellaneous classification such as Bayes classifier, neural network, support vector machines, K-nearest neighbor, gaussien mixture model and hybrid method based on weighted analysis of a directed non-negative matrix and a neural network with a general recession as well as some deep learning methods, is done in order to show different results  to classify the age and gender of the speaker when processing the speech signal. The study showed that methods and algorithms of deep learning have excelled in providing accuracy ratios higher than other methods, and it shows that the hybridization of two or more classification methods increases the accuracy level of the results.

Publisher

Tikrit University

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3