Affiliation:
1. a College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot, China
2. b Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application of Agriculture and Animal Husbandry, Hohhot, China
Abstract
Abstract
One of the most important indicators of lake eutrophication is chlorophyll-a (Chl-a) concentration, which is also an essential component of lake water quality monitoring. It is an efficient, economical and convenient method to monitor the Chl-a concentration through remote sensing images. Taking the Wuliangsuhai Lake as an example, the relevant bands of Sentinel-2 images were used as the input and the Chl-a concentration as the output to build neural network models. In the process of building the model, we mainly studied and tested the impact of adding time features to the model input on the model accuracy. Through the experiment, it was found that the month and day difference features of remote sensing images and Chl-a measurement could significantly improve the prediction accuracy of Chl-a concentration in varying degrees. Finally, it was determined that the neural network prediction model with 12 bands of Sentinel-2 images combined month features as inputs and one hidden layer, eight neurons and Chl-a concentration as outputs was the best. Then, the accuracy of the model was validated when the test set accounts for 20 and 30%, and good results were obtained.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Natural Science Foundation of Inner Mongolia Autonomous Region of China
Subject
Water Science and Technology,Environmental Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献