Experimental hydraulic parameters of drainage grate inlets with a horizontal outflow in the broad-crested weir mode

Author:

Zhuk Volodymyr1ORCID,Matlai Ivan1ORCID,Zavoiko Bohdan1,Popadiuk Ihor1ORCID,Pavlyshyn Vitaliy1,Mysak Ihor1ORCID,Mysak Pavlo1

Affiliation:

1. 1 Institute of Civil Engineering and Building Systems, Lviv Polytechnic National University, 12, S. Bandery Str., Lviv 79013, Ukraine

Abstract

Abstract The accurate assessment of discharge coefficients for different types of water inlets is crucial for minimizing modelling errors in drainage systems thus reducing the risk of flooding in adjacent areas. This study experimentally investigated the hydraulic characteristics of gully grate inlets with water seal and horizontal outflow, with nominal outlet pipe diameters of 100 and 150 mm, using a laboratory setup that meets the requirements of a special European regulation. Transition depths from the weir to the orifice mode were determined, and it was found that the perforated grates significantly increased the hydraulic resistance compared to the bar grates, resulting in a corresponding decrease in the discharge capacity of gully inlets. Power–law relationships between the weir discharge coefficient and gauge head were obtained for both bar and perforated grate inlets, as well as between the discharge coefficient and Froude number at the perimeter of grate inlets. These findings provide important insights for optimizing the design and performance of water inlets, particularly in the weir mode, which is critical for the proper functioning of drainage systems.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3