Equations and methodologies of inlet drainage system discharge coefficients: A review

Author:

Zaiter Ali1ORCID,Sabtu Nuridah1ORCID,Almaliki Doaa F.12ORCID

Affiliation:

1. School of Civil Engineering, Universiti Sains Malaysia , 14300 Nibong Tebal , Malaysia

2. Environment and Pollution Engineering Department, Basrah Engineering Technical College, Southern Technical University , Al-zubair Street , Basra , Iraq

Abstract

Abstract Accurate determination of grate inlet discharge coefficients is crucial in reducing modeling uncertainties and mitigating urban flooding hazards. This review critically examines the methods, equations, and recommendations for determining the weir/orifice discharge coefficients, based on the inlet parameters and flow conditions. Reviewing previous studies for inlets showed that the discharge coefficient of rectangular inlets under subcritical flow ranges from 0.53 to 0.6 for weirs and from 0.4 to 0.46 for orifices, while in grated circular inlets, it falls between 0.115 and 0.372 for weirs and between 0.349 and 2.038 for orifices. For circular non-grated inlets under subcritical flow, the weir and orifice coefficients are in the range of 0.493–0.587 and 0.159–0.174, respectively. However, the orifice discharge coefficients of grated and non-grated inlets with unknown Froude number range between 0.14–0.39 and 0.677–0.82, respectively. For supercritical flow, the weir and orifice discharge coefficients of grated and non-grated rectangular inlets are 0.03–0.47 and 1.67–2.68, respectively. Previous studies showed that it is recommended to correlate the discharge coefficients with the approaching flow and Froude number under subcritical and supercritical flows, respectively. Yet, additional studies are recommended for a better understanding of the limits and parameters governing the flow transitional stage between weir and orifice and between subcritical and supercritical conditions. Moreover, further research is required to determine the weir and orifice discharge coefficients of circular inlets under supercritical flow as well as the orifice discharge coefficient range of rectangular non-grated inlets under subcritical flow. Finally, it is recommended to increase the road surface roughness to reduce Froude number, and thereby, increase discharge coefficients of street inlets. The aim of this review is to help inlet designers and authorities promote sustainable cities with resilient urban drainage systems and reduce the environmental, economic, health, and social impacts of urban drainage failure.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3