Assessing the effectiveness of a residential-scale detention tank operated in a multi-objective approach using SWMM

Author:

Wang Shiping1,Wang Jianlong2,Xue Chonghua2,Qiu Rongting1,Sun Shi3,Yang Zitong4,Qiao Yuanhui3

Affiliation:

1. a Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China

2. b Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

3. c Science and Technology Management Department, Beijing Architectural Decoration Design & Engineering Co., Ltd, Beijing 100123, China

4. d Beijing Sustainable Urban Drainage System Construction and Risk Control Engineering Technology Research Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

Abstract

Abstract The volume capture ratio of annual rainfall (VCRAR) of low-impact development measures is significantly influenced by its operating characteristics, particularly for residential stormwater detention tanks (SWDTs). The multi-objective operation strategy of SWDTs, encompassing toilet flushing (TF), green space irrigation (GSI), combined TF and GSI (TF-GSI), and peak flow reduction (PFR) rate, were compared using a case study in Beijing based on the stormwater management model. The findings indicate that the VCRAR for TF, GSI, and TF-GSI rainwater harvesting targets was 89.05, 77.16, and 91.21%, respectively. The operating scheme and return periods have a significant impact on the PFR rate's effectiveness. When the return period was lower than 10 years, the SWDT does not reach its maximum storage capacity, and the PFR rate was increased with increasing the return period: the PFR rate was 71.47% when the design return period was 10 years. It will also produce the phenomena of water inrush, and the overflow volume will grow rapidly when the SWDT reaches its maximum storage capacity. Hence, the operation of SWDTs may be integrated with real-time control to optimize the VCRAR for rainwater reuse and flood migration, thereby enhancing the volume utilization efficiency of SWDTs.

Funder

National Key R & D Program of the Science and Technology of China

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3