Affiliation:
1. Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2. The Party Committee in Colleges and Universities, The Open University of China, Beijing 100039, China
Abstract
A proposed method for analyzing the effectiveness of rainwater storage tanks (RWSTs) based on various enabling rule scenarios has been proposed to address the issue of incomplete strategies and measures for controlling excessive rainwater runoff. Three enabling rules for RWSTs have been proposed, as follows: enabling rule I, which involves activation upon rainfall; enabling rule II, which requires the rainfall intensity to reach a predetermined threshold; and enabling rule III, which necessitates the cumulative rainfall to reach a set threshold. In order to assess the effectiveness of these enabling rules when reducing the total volume of rainwater outflow (TVRO), peak flow rate (PFR), and peak flow velocity (PFV), a comparative analysis was conducted to determine which enabling rule yielded the most optimal control effect. The findings indicate that the enabling rule I is responsible for determining the optimal unit catchment’s rainfall capture volume (UCRCV), which is measured at 300 m3·ha−1. Additionally, the control effect of the TVRO of the RWSTs remains largely unaffected by the peak proportion coefficient. Enabling rule II establishes the optimal activation threshold at a rainfall intensity of 1 mm·min−1; under this enabling rule, RWSTs demonstrate the most effective control over PFR and PFV. Enabling rule III enables the determination of the optimal activation threshold, which is set at a cumulative rainfall of 20 mm; under this enabling rule, the implementation of the RWST technique yields the most effective control over the TVRO. Consequently, the optimal rainwater runoff reduction plan for the study area has been successfully determined, providing valuable guidance for the implementation of scientific and reasonable optimal runoff management.
Funder
the National Key R&D Program of China
the Project of Construction and Support for High-Level Innovative Teams of Beijing Municipal Institutions