Affiliation:
1. a State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
2. b College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
3. c Department of Biosciences, Centre for Biogeochemistry in the Anthropocene, University of Oslo, Oslo 0316, Norway
Abstract
Abstract
Black-odorous water is a severe environmental issue that has received continuous attention. The major purpose of the present study was to propose an economical, practical, and pollution-free treatment technology. In this study, the in situ remediation of black-odorous water was conducted by applying different voltages (2.5, 5, and 10 V) to improve oxidation conditions of the surface sediments. The study investigated the effects of voltage intervention on water quality, gas emissions, and microbial community dynamics in surface sediments during the remediation process. The results indicated that the voltage intervention can effectively increase the oxidation–reduction potential (ORP) of the surface sediments and inhibit the emissions of H2S, NH3, and CH4. Moreover, the relative abundances of typical methanogens (Methanosarcina and Methanolobus) and sulfate-reducing bacteria (Desulfovirga) decreased because of the increase in ORP after the voltage treatment. The microbial functions predicted by FAPROTAX also demonstrated the inhibition of methanogenesis and sulfate reduction functions. On the contrary, the total relative abundances of chemoheterotrophic microorganisms (e.g., Dechloromonas, Azospira, Azospirillum, and Pannonibacter) in the surface sediments increased significantly, which led to enhanced biochemical degradability of the black-odorous sediments as well as CO2 emissions.
Funder
National Natural Science Foundation of China
the Fundamental Research Funds for the Central Universities
Postgraduate Research and Practice Innovation Program of Jiangsu Province
Subject
Water Science and Technology,Environmental Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献