Monitoring of cyanobacteria using derivative spectrophotometry and improvement of the method detection limit by changing pathlength

Author:

Malhotra Amitesh1,Örmeci Banu1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa ON K1S 5B6, Canada

Abstract

Abstract Effective monitoring tools and methods are needed for the early detection and management of cyanobacteria in water bodies to minimize their harmful impacts on the environment and public health. This research investigated changing the cuvette pathlength (10-, 50-, and 100-mm) to improve the detection of cyanobacteria using UV-Vis spectrophotometry with subsequent application of derivative spectrophotometry and Savitzky-Golay (S-G) transformation. A non-toxigenic strain of blue-green cyanobacteria, Microcystis aeruginosa (CPCC 632), and a green algae strain for comparison, Chlorella vulgaris (CPCC 90), were studied in a wide range of concentrations (955,000 to 1855 cells/mL). In each concentration range, method detection limits were established with absorbance measurements and S-G first derivative of absorbance using 10-, 50-, and 100-mm cuvette pathlengths. Increasing the cuvette pathlength from 10 to 100 mm resulted in a 15-fold improvement in sensitivity with absorbance and a 13-fold improvement with S-G first derivative of absorbance for M. aeruginosa. Overall, adoption of 100 mm pathlength and application of S-G derivative spectra improved the method detection limit for M. aeruginosa from 337,398 to 4916 cells/mL, which is below the WHO guideline for low probability of adverse health effects (<20,000 cells/mL). Similarly, the detection limit for C. vulgaris was improved from 650,414 to 11,661 cells/mL. The results also showed that spectrophotometry could differentiate M. aeruginosa from C. vulgaris based on the variations in their pigment absorbance peaks.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3