Monitoring of Cyanobacteria in Water Using Spectrophotometry and First Derivative of Absorbance

Author:

Agberien Adogbeji Valentine,Örmeci Banu

Abstract

Management of cyanobacteria blooms and their negative impact on human and ecosystem health requires effective tools for monitoring their concentration in water bodies. This research investigated the potential of derivative spectrophotometry in detection and monitoring of cyanobacteria using toxigenic and non-toxigenic strains of Microcystis aeruginosa. Microcystis aeruginosa was quantified in deionized water and surface water using traditional spectrophotometry and the first derivative of absorbance. The first derivative of absorbance was effective in improving the signal of traditional spectrophotometry; however, it was not adequate in differentiating between signal and noise at low concentrations. Savitzky-Golay coefficients for first derivative were used to smooth the derivative spectra and improve the correlation between concentration and noise at low concentrations. Derivative spectrophotometry improved the detection limit as much as eight times in deionized water and as much as four times in surface water. The lowest detection limit measured in surface water with traditional spectrophotometry was 392,982 cells/mL, and the Savitzky-Golay first derivative of absorbance was 90,231 cells/mL. The method provided herein provides a promising tool in real-time monitoring of cyanobacteria concentrations and spectrophotometry offers the ability to measure water quality parameters together with cyanobacteria concentrations.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3