Extended mixed-culture biofilms (MCB) model to describe integrated fixed film/activated sludge (IFAS) process behaviour

Author:

Albizuri J.1,van Loosdrecht M. C. M.2,Larrea L.1

Affiliation:

1. Environmental Engineering Department, CEIT and Tecnun (University of Navarra), Manuel Lardizabal 15, 20018, San Sebastian, Spain E-mail: jalbizuri@ceit.es; llarrea@ceit.es

2. Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands E-mail: M.C.M.vanLoosdrecht@tudelft.nl

Abstract

This paper presents how, in a calibration process, different assumptions regarding the standard Mixed-Culture Biofilms (MCB) model were able to match the average results at a continuous Johannesburg pilot plant (comprising two aerobic reactors, AE1 and AE2), but failed to match the batch test results of either the rate of endogenous carbonaceous oxygen uptake (OUR) or the rate of nitrate production (NPR). Under the first assumption, where attachment and diffusion of particulate components were not used, the OUR in the biofilm of the first aerobic reactor (AE1) was too low due to the absence of slowly biodegradable COD (XS) attachment flux. In a second assumption, where high diffusion and attachment coefficients were used, the NPR in the biofilm of the AE1 reactor exceeded the experimental value due to the high attachment flux used for nitrifiers (XA) and the low competition for space from XS and heterotrophic bacteria (XH). The only way to match all the experimental results was through the use of a higher attachment coefficient for XS in the first reactor (AE1), but this was considered unreasonable. Hence, an extended model was developed where a colloidal state, which interacts at the same time with the flocs and the biofilm through attachment-detachment processes, is distinguished. This model allowed the experimental results to be matched, but using the same value for the attachment coefficients of all particulate components.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3