Organic matter removal in a simultaneous nitrification–denitrification process using fixed-film system

Author:

González-Tineo P.,Aguilar A.,Reynoso A.,Durán U.,Garzón-Zúñiga M.,Meza-Escalante E.,Álvarez L.,Serrano D.

Abstract

AbstractSwine wastewater treatment is a complex challenge, due to the high organic matter (OM) and nitrogen (N) concentrations which require an efficient process. This study focused on evaluating two different support media for OM and N removal from an Upflow Anaerobic Sludge Blanket (UASB) reactor fed with swine wastewater. Maximum specific nitrification (MSNA) and denitrification (MSDA) activity test for both biofilm and suspended biomass were carried out using as supports: polyurethane foam (R1) and polyethylene rings (R2). The results showed that R2 system was more efficiently than R1, reaching OM removal of 77 ± 8% and N of 98 ± 4%, attributed to higher specific denitrifying activity recorded (5.3 ± 0.34 g NO3-N/g TVS∙h). Furthermore, 40 ± 5% of the initial N in the wastewater could have been transformed into molecular nitrogen through SND, of which only 10 ± 1% was volatilized. In this sense, MSDA tests indicated that suspended biomass was responsible for at least 70% of N removal and only 20% can be attributed to biofilm. SND could be confirmed with the analysis of microbial diversity, due to the presence of the genus Pseudomonas dominated the prokaryotic community of the system in 54.4%.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3