An effective multi-objective approach to prioritisation of sewer pipe inspection

Author:

Berardi L.1,Giustolisi O.1,Savic D. A.2,Kapelan Z.2

Affiliation:

1. Civil and Environmental Engineering Department, Technical University of Bari, via Orabona 4, 70125, Bari, Italy E-mail: l.berardi@poliba.it; o.giustolisi@poliba.it

2. Centre for Water Systems, School of Engineering, Computing and Mathematics, University of Exeter, North Park Road, Exeter EX4 4QF, UK E-mail: d.savic@exeter.ac.uk; z.kapelan@exeter.ac.uk

Abstract

The first step in the decision making process for proactive sewer rehabilitation is to assess the condition of conduits. In a risk-based decision context the set of sewers to be inspected first should be identified based on the trade-off between the risk of failures and the cost of inspections. In this paper the most effective inspection works are obtained by solving a multi-objective optimization problem where the total cost of the survey programme and the expected cost of emergency repairs subsequent to blockages and collapses are considered simultaneously. A multi-objective genetic algorithm (MOGA) is used to identify a set of Pareto-optimal inspection programmes. Regardless of the proven effectiveness of the genetic-algorithm approach, the scrutiny of MOGA-based inspection strategies shows that they can differ significantly from each other, even when having comparable costs. A post-processing of MOGA solutions is proposed herein, which allows priority to be assigned to each survey intervention. Results are of practical relevance for decision makers, as they represent the most effective sequence of inspection works to be carried out based on the available funds. The proposed approach is demonstrated on a real large sewer system in the UK.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3