Multi-objective optimisation of sewer maintenance scheduling

Author:

Draude Sabrina1ORCID,Keedwell Ed2,Kapelan Zoran13,Hiscock Rebecca4

Affiliation:

1. a College of Engineering, Mathematics and Physical Sciences, University of Exeter Engineering, Exeter EX4 4QF, UK

2. b College of Engineering, Mathematics and Physical Sciences, University of Exeter Computer Science, Exeter EX4 4QF, UK

3. c Department of Water Management, Delft University of Technology, Stevinweg 1, 2628CN Delft, The Netherlands

4. d Dwr Cymru Welsh Water, Fortran Road, St Mellons, Cardiff, CF3 0LT, UK

Abstract

Abstract Effective functioning of sewer systems is critical for the everyday life of people in the urban environment. This is achieved, among other things, by the means of regular, planned maintenance of these systems. A large water utility would normally have several maintenance teams (or crews) at their disposal who can perform related jobs at different locations in the company area and with different levels of priority. This paper presents a new methodology for the optimisation of related maintenance schedules resulting in clear prioritisation of the ordering of maintenance tasks for crews. The scheduling problem is formulated as a multi-objective optimisation problem with the following three objectives, namely the minimisation of the total maintenance cost, the minimisation of travel times of maintenance teams and the maximisation of the job's priority score, all over a pre-defined scheduling horizon. The optimisation problem is solved using the Nondominated Sorting Genetic Algorithm-II (NSGA-II) optimisation method. The results obtained from a real-life UK case study demonstrate that the new methodology can determine optimal, low-cost maintenance schedules in a computationally efficient manner when compared to the corresponding existing company schedules. Daily productivity of maintenance teams in terms of number of jobs completed improved by 26% when the methodology was applied to scheduling in the case study. Given this, the method has the potential to be applied within water utilities and the water utility Welsh Water (Dŵr Cymru Welsh Water (DCWW)) is currently implementing it into their systems.

Funder

Engineering and Physical Sciences Research Council

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3