Optimization of measurement campaigns for calibration of a conceptual sewer model

Author:

Kleidorfer M.1,Möderl M.1,Fach S.1,Rauch W.1

Affiliation:

1. Unit of Environmental Engineering, Faculty of Civil Engineering, University of Innsbruck, Technikerstrasse 13 A6020, Innsbruck, Austria E-mail: michael.moederl@uibk.ac.at; stefan.fach@uibk.ac.at; wolfgang.rauch@uibk.ac.at

Abstract

To simulate hydrological models of combined sewer systems an accurate calibration is indispensable. In addition to all sources of uncertainties in data collection due to the measurement methods itself, it is a key question which data has to be collected to calibrate a hydrological model, how long measurement campaigns should last and where that data has to be collected in a spatial distributed system as it is neither possible nor sensible to measure the complete system characteristics. In this paper we address this question by means of stochastic modelling. Using Monte Carlo Simulation different calibration strategies (selection of measurement sites, selection of rainfall-events) and different calibration parameters (overflow volume, number of overflows) are tested, in order to evaluate the influence on predicting the total overflow volume of the entire system. This methodology is applied in a case study with the aim to calculate the combined sewer overflow (CSO) efficiency. It can be shown that a distributed hydrological model can be calibrated sufficiently when calibration is done on 30% of all existing CSOs based on long-term observation. Event based calibration is limited possible to a limited extend when calibration events are selected carefully as wrong selection of calibration events can result in a complete failure of the calibration exercise.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3