Model parameter estimation with imprecise information

Author:

Rauch Wolfgang1ORCID,Rauch Nikolaus2ORCID,Kleidorfer Manfred1ORCID

Affiliation:

1. a University of Innsbruck, Unit of Environmental Engineering, Technikerstrasse 13, Innsbruck, A-6020, Austria

2. b University of Innsbruck, Interactive Graphics and Simulation Group, Technikerstrasse 13, Innsbruck, A-6020, Austria

Abstract

ABSTRACT Model parameter estimation is a well-known inverse problem, as long as single-value point data are available as observations of system performance measurement. However, classical statistical methods, such as the minimization of an objective function or maximum likelihood, are no longer straightforward, when measurements are imprecise in nature. Typical examples of the latter include censored data and binary information. Here, we explore Approximate Bayesian Computation as a simple method to perform model parameter estimation with such imprecise information. We demonstrate the method for the example of a plain rainfall–runoff model and illustrate the advantages and shortcomings. Last, we outline the value of Shapley values to determine which type of observation contributes to the parameter estimation and which are of minor importance.

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3