Nitrogen removal from high organic loading wastewater in modified Ludzack–Ettinger configuration MBBR system

Author:

Torkaman Mojtaba1,Borghei Seyed Mehdi1,Tahmasebian Sepehr1,Andalibi Mohammad Reza2

Affiliation:

1. Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran

2. Department of Chemical Engineering, The Pennsylvania State University, University Park, 16802 PA, USA

Abstract

A moving bed biofilm reactor with pre-denitrification configuration was fed with a synthetic wastewater containing high chemical oxygen demand (COD) and ammonia. By changing different variables including ammonium and COD loading, nitrification rate in the aerobic reactor and denitrification rate in the anoxic reactor were monitored. Changing the influent loading was achieved via adjusting the inlet COD (956–2,096 mg/L), inlet ammonium (183–438 mg/L), and hydraulic retention time of the aerobic reactor (8, 12, and 18 hours). The overall organic loading rate was in the range of 3.60–17.37 gCOD/m2·day, of which 18.5–91% was removed in the anoxic reactor depending on the operational conditions. Considering the complementary role of the aerobic reactor, the overall COD removal was in the range 87.3–98.8%. In addition, nitrification rate increased with influent ammonium loading, the maximum rate reaching 3.05 gNH4/m2·day. One of the most important factors affecting nitrification rate was influent C:N entering the aerobic reactor, by increasing which nitrification rate decreased asymptotically. Nitrate removal efficiency in the anoxic reactor was also controlled by the inlet nitrate level entering the anoxic reactor. Furthermore, by increasing the nitrate loading rate from 0.91 to 3.49 gNO/m3·day, denitrification rate increased from 0.496 to 2.47 gNO/m3·day.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference36 articles.

1. Dairy wastewater treatment in a moving bed biofilm reactor;Andreottola;Water Science and Technology,2002

2. Post denitrification in a moving bed biofilm reactor process;Aspegren;Water Science and Technology,1998

3. Influence of high organic loading rates on COD removal and sludge production in moving bed biofilm reactor;Aygun;Environmental Engineering Science,2008

4. Performance of upflow anoxic bioreactor for wastewater treatment;Behera;International Journal of Environmental Science and Technology,2007

5. Treatment of integrated newsprint mill wastewater in moving bed biofilm reactors;Broch-Due;Water Science and Technology,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3