Scavenging of PM2.5 by precipitation and the effects of precipitation pattern changes on health risks related to PM2.5 in Tokyo, Japan

Author:

Ikeuchi Hiroaki12,Murakami Michio3,Watanabe Satoshi2

Affiliation:

1. Department of Civil Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

2. Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan

3. Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Komaba, Tokyo 153-8505, Japan and Department of Health Risk Communication, School of Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, 960-1295, Japan

Abstract

Fine particulate matter (aerodynamic diameter <2.5 μm; PM2.5) poses risks to human health. While precipitation is the main process for decreasing ambient pollutant concentrations, scavenging of PM2.5 by precipitation remains to be investigated. Here we formulated the processes of PM2.5 scavenging by precipitation from observed PM2.5 concentrations ([PM2.5]) and precipitation intensities. Then we analyzed how changes in precipitation patterns would affect health risks related to PM2.5 on the basis of a Monte Carlo simulation. Tokyo, the capital of Japan, was selected as the target for this study because of its social significance. We found that [PM2.5] decreased significantly through scavenging of PM2.5 from the atmosphere by precipitation. In contrast, we found no significant correlation between reduction of [PM2.5] and precipitation intensity. Our model for estimating the reduction of PM2.5 and the Monte Carlo simulation showed good agreement with observations. Among various changes in potential precipitation patterns, changes in the arithmetic mean of the number of events and/or in precipitation duration were more influential on reduction of [PM2.5] than changes in their standard deviations. Health risks due to PM2.5 will increase with decreases in precipitation duration and occurrence.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3