Vertical-flow constructed wetlands treating domestic wastewater contaminated by hydrocarbons

Author:

Al-Isawi R. H. K.1,Sani A.1,Almuktar S. A. A. A. N.1,Scholz M.1

Affiliation:

1. Civil Engineering Research Group, The University of Salford, School of Computing, Science and Engineering, Newton Building, Salford, Greater Manchester M5 4WT, UK

Abstract

The aim was to compare the impact of different design (aggregate size) and operational (contact time, empty time and chemical oxygen demand (COD) loading) variables on the long-term and seasonal performance of vertical-flow constructed wetland filters operated in tidal flow mode before and after a one-off spill of diesel. Ten different vertical-flow wetland systems were planted with Phragmites australis (Cav.) Trin. ex Steud. (common reed). Approximately 130 g of diesel fuel was poured into four wetland filters. Before the spill, compliance with secondary wastewater treatment standards was achieved by all wetlands regarding ammonia-nitrogen (NH4-N), nitrate-nitrogen (NO3-N) and suspended solids (SS), and non-compliance was recorded for biochemical oxygen demand and ortho-phosphate-phosphorus (PO4-P). Higher COD inflow concentrations had a significantly positive impact on the treatment performance for COD, PO4-P and SS. The wetland with the largest aggregate size had the lowest mean NO3-N outflow concentration. However, the results were similar regardless of aggregate size and resting time for most variables. Clear seasonal outflow concentration trends were recorded for COD, NH4-N and NO3-N. No filter clogging was observed. The removal efficiencies dropped for those filters impacted by the diesel spill. The wetlands system shows a good performance regarding total petroleum hydrocarbon (TPH) removal.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3