Degradation of Dimethylacetamide from Membrane Production through Constructed Wetlands—Pathways, Ecotoxicological Effects and Consequences for Chemical Analysis

Author:

Schalk Thomas1ORCID,Schubert Sara23,Rollberg Anja4,Freitag-Stechl Dirk5,Schubert Annika2,Elena Alan Xavier2,Koch Christian1,Krebs Peter1

Affiliation:

1. Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01062 Dresden, Germany

2. Institute of Hydrobiology, Technische Universität Dresden, 01062 Dresden, Germany

3. Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany

4. B. Braun Avitum Saxonia GmbH, 01454 Radeberg, Germany

5. CUP Laboratorien Dr. Freitag GmbH, 01454 Radeberg, Germany

Abstract

Wastewater from factories producing polysulfone-based membranes mainly contains the used organic solvent, i.e., dimethylacetamide (DMAc). Due to the environmental impact of DMAc, wastewater treatment is mandatory. Several biological treatment options based on the activated sludge process are described in the literature. Due to artificial aeration, these techniques have high energy requirements. Near-nature processes such as vertical flow constructed wetlands (VF wetlands) have a low energy demand, high tolerance to load fluctuations, and low maintenance requirements. Therefore, high-loaded, two-stage VF wetlands are an efficient option for treating wastewater. However, constructed wetlands have so far only been used to a limited extent for the treatment of industrial wastewater. In the present study, the ability of laboratory-scale, high-load, two-stage VF wetlands to treat DMAc was investigated. This included their DMAc degradation efficiency and corresponding pathways, removal of the total organic carbon (TOC), nitrification and denitrification of the nitrogen, as well as the ecotoxicological effects (mutagenicity, genotoxicity, reactive oxygen species) of untreated and treated wastewater. The focus was to determine the effect of different grain size distributions on removal rates, the maximum inflow loading, and the effect of high inflow concentrations on effluent concentrations. In general, DMAc was completely degraded using VF wetlands, with dimethylamine (DMA) identified as the main intermediate. TOC removal rates reached more than 99%. The nitrogen bound to DMAc was completely nitrified. However, the start-up of the VF wetlands without seeded filter material temporarily leads to high nitrite accumulation. This may affect the mutagenicity of the treated wastewater. The results show that high-loaded, two-stage VF wetlands are an effective option for treating wastewater containing DMAc with higher efficiency than comparable biological processes.

Funder

Federal Ministry of Education and Research

German Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference72 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3