Investigation of artificial neural network performance in the aerosol properties retrieval

Author:

Srivastava Nishi1ORCID,Vignesh D.1,Saxena Nisheeth2

Affiliation:

1. Department of Physics, Birla Institute of Technology, Mesra, Ranchi

2. Department of Computer Science and Engineering, Birla Institute of Technology, Mesra, Ranchi

Abstract

Abstract Aerosols are an integral part of Earth's climate system and their effect on climate makes this field a relevant research problem. The artificial neural network (ANN) technique is an upcoming technique in different research fields. In the current work, we have evaluated the performance of an ANN with its parameters in simulating the aerosol's properties. ANN evaluation is performed over three sites (Kanpur, Jaipur, and Gandhi College) in the Indian region. We evaluated the performance of ANN for model's hyperparameter (number of hidden layers) and optimizer's hyperparameters (learning rate and number of iterations). The optical properties of aerosols from AERONET (AErosol RObotic NETwork) are used as input to ANN to estimate the aerosol optical depth (AOD) and Angstrom exponent. Results emphasized the need for optimal learning rate values and the number of iterations to get accurate results with low computational cost and to avoid overfitting. We observed a 23–25% increase in computational time with an increase in iteration. Thus, a meticulous selection of these parameters should be made for accurate estimations. The result indicates that the developed ANN can be utilized to derive AOD, which is not assessed at AERONET stations.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3