Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements

Author:

,Diehl T.,Dubovik O.,Eck T. F.,Holben B. N.,Sinyuk A.,Streets D. G.

Abstract

Abstract. Atmospheric aerosol distributions from 2000 to 2007 are simulated with the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to attribute light absorption by aerosol to its composition and sources from pollution, dust, and biomass burning. The 8-year, global averaged total aerosol optical depth (τ), absorption optical depth (τa), and single scattering albedo (ω) at 550 nm are estimated at 0.14, 0.0086, and 0.95, respectively, with sulfate making the largest fraction of τ (37%), followed by dust (30%), sea salt (16%), organic matter (OM) (13%), and black carbon (BC) (4%). BC and dust account for 43% and 53% of τa, respectively. From a model experiment with "tagged" sources, natural aerosols are estimated to be 58% of τ and 53% of τa, with pollution and biomass burning aerosols to share the rest. Comparing with data from the surface sunphotometer network AERONET, the model tends to reproduce much better the AERONET direct measured data of τ and the Ångström exponent (α) than its retrieved quantities of ω and τa. Relatively small in its systematic bias of τ for pollution and dust regions, the model tends to underestimate τ for biomass burning aerosols by 30–40%. The modeled α is 0.2–0.3 too low (particle too large) for pollution and dust aerosols but 0.2–0.3 too high (particle too small) for the biomass burning aerosols, indicating errors in particle size distributions in the model. Still, the model estimated ω is lower in dust regions and shows a much stronger wavelength dependence for biomass burning aerosols but a weaker one for pollution aerosols than those quantities from AERONET. These comparisons necessitate model improvements on aerosol size distributions, the refractive indices of dust and black carbon aerosols, and biomass burning emissions in order to better quantify the aerosol absorption in the atmosphere.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 222 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3