Multi-scale flood prediction based on GM (1,2)-fuzzy weighted Markov and wavelet analysis

Author:

Zhang Jinping1,Wang Yuhao1,Zhao Yong2,Fang Hongyuan1

Affiliation:

1. School of Water Conservancy Engineering, Zhengzhou University, High-Tech District, No. 100 Science Road, Zhengzhou City 450001, Henan Province, China

2. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

Abstract

Abstract In order to forecast flood accurately and reveal the relationship between rainstorm and flood at the micro level, a model which combines wavelet analysis, GM (1,2) and fuzzy weighted Markov is built. Taking the Jialu River of Zhengzhou City in China as study area, the GM (1,2) model is constructed between the components of rainfall and flood volume by wavelet decomposition to connect the two variables, then a fuzzy weighted Markov method is introduced to correct the predicted component of flood volume. The corrected results are superimposed to obtain the predicted value of flood. To verify the reliability of the model, the maximum daily, 3-, 5- and 7-day flood volume of the next five floods in Zhongmu and Jiangang hydrological stations are predicted in turn. The results show that the multi-scale flood forecasting model has high overall forecasting accuracy, with the average relative errors all less than 10%. The forecasting accuracy of maximum five-day flood volume is higher than other periods. On the micro level, the results indicate that the fluctuation trend and period of rainfall-flood volume in d1, d2 and d3 are basically the same. Among the components of forecasted flood, the impact of rainfall on flood volume is most significant in the d3 component.

Funder

Key Technology Research and Development Program of Shandong

Program for Innovative Talents (in Science and Technology) at University of Henan Province

Foundation for University Youth Key Teacher of Henan Province

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3