A Data-Driven Method and Hybrid Deep Learning Model for Flood Risk Prediction

Author:

Ni Chenmin12ORCID,Fam Pei Shan2ORCID,Marsani Muhammad Fadhil2ORCID

Affiliation:

1. School of International Business, Zhejiang Yuexiu University, Shaoxing 312000, China

2. School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Penang, Malaysia

Abstract

Flood disasters occur worldwide, and flood risk prediction is conducive to protecting human life and property safety. Influenced by topographic changes and rainfall, the water level fluctuates randomly and violently during the flood, introducing many noises and directly increasing the difficulty of flood prediction. A data-driven flood forecasting method is proposed based on data preprocessing and a two-layer BiLSTM-Attention network to improve forecast accuracy. First, the Variational Mode Decomposition (VMD) is used to decompose the data for reducing noise and produce suitable Intrinsic Mode Functions (IMFs); Then, an optimized two-layer attention-based Bidirectional Long Sshort-Term memory (BiLSTM-Attention) network is constructed to predict each IMF. Finally, two optimization algorithms are used to obtain the optimized parameters of VMD and BiLSTM intelligently, increasing the self-adaptability. The inertia factor of particle swarm optimization is improved and then used to optimize the five hyperparameters of BiLSTM. The proposed model reduces storage errors for smaller training sets and can achieve good performance. Three water level data sets from the Yangtze River in China are used for comparative experiments. Numerical results show that the peak height absolute error is within 2 cm, and the relative error of peak time arrival is within 30%. Compared with LSTM, BiLSTM, CNN-BiLSTM-attention, etc., the proposed model reduces the root mean square error by at least 50% and has advantages for high-risk forecasting when the water level exceeds the defense line and fluctuates prominently.

Funder

Ministry of Higher Education, Malaysia

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3