Risk assessment of possible impacts of climate change and irrigation on wheat yield and quality with a modified CERES-Wheat model

Author:

Liu Jianchao1,Yao Wenbin1,Jiang Meijun1

Affiliation:

1. Department of Engineering and Technology, Jiyang College of Zhejiang A and F University, Zhejiang, China

Abstract

Abstract The effects of climate change on yield and quality in different climate regions have high uncertainty. Risk assessment is an effective measure to assess the seriousness of the projected impacts for decision-makers. A modified quality model was used to simulate integrated impacts of climate change, environment, and management on wheat yield and quality. Then, the Canadian Earth System Model version 5 (CanESM5) was used to forecast the daily meteorological data, and the Statistical Downscaling Model (SDSM V5.2) was used for downscaling. The modified CERES-Wheat was combined with the forecasted meteorological data to simulate the future wheat yield and grain protein concentration (GPC). The risk to wheat yield and quality in three climatic regions in Northwest China under two climate change scenarios of the CanESM5 was assessed. The average temperature increased by 0.22–3.34 °C, and precipitation increased by 10–60 mm from 2018 to 2100. Elevated temperature and precipitation had positive effects on the yields. The risk to yield in most regions with climate change decreased by 3.8–25.1%. The risk to GPC in all regions with climate change decreased by 7.3–27.2%. Irrigation decreased the risk to yield greatly but had different effects in the three climatic regions. The risk to yield with irrigation decreased by 37.7–52.1%. In contrast to previous studies, in this study, the risk to GPC with irrigation substantially increased by 25.8–28.9% in humid regions and 3.9–8.8% in subhumid regions and decreased by 37.7–52.1% in semiarid regions. The irrigation should be discreetly applied for different climatic regions to combat climate change.

Funder

the start-up funds of Jiyang College of Zhejiang A & F University

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Reference67 articles.

1. Steamed bread. II. Role of protein content and strength;Addo;Cereal Chemistry,1991

2. Influence mechanism of climate change over crop growth and water demands for wheat-rice system of Punjab, Pakistan;Ahmad;Journal of Water and Climate Change,2020

3. Assessing winter wheat responses to climate change scenarios: a simulation study in the U.S. Great Plains;Albert;Climatic Change,2003

4. Fluctuations of CO2 in Free-Air CO2 Enrichment (FACE) depress plant photosynthesis, growth, and yield

5. Temperature, Water and Fertilizer Influence the Timing of Key Events During Grain Development in a US Spring Wheat

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3